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Abstract Crop water status is an important parameter for plant growth and yield perfor-

mance in greenhouses. Thus, early detection of water stress is essential for efficient crop

management. The dynamic response of plants to changes of their environment is called

‘speaking plant’ and multisensory platforms for remote sensing measurements offer the

possibility to monitor in real-time the crop health status without affecting the crop and

environmental conditions. Therefore, aim of this work was to use crop reflectance and

temperature measurements acquired remotely for crop water status assessment. Two dif-

ferent irrigation treatments were imposed in tomato plants grown in slabs filed with perlite,

namely tomato plants under no irrigation for a certain period; and well-watered plants. The

plants were grown in a controlled growth chamber and measurements were carried out

during August and September of 2014. Crop reflectance measurements were carried out by

two types of sensors: (i) a multispectral camera measuring the radiation reflected in three

spectral bands centred between 590–680, 690–830 and 830–1000 nm regions, and (ii) a

spectroradiometer measuring the leaf reflected radiation from 350 to 2500 nm. Based on

the above measurements several crop indices were calculated. The results showed that crop

reflectance increased due to water deficit with the detected reflectance increase being

significant about 8 h following irrigation withholding. The results of a first derivative

analysis on the reflectance data showed that the spectral regions centred at 490–510,

530–560, 660–670 and 730–760 nm could be used for crop status monitoring. In addition,

the results of the present study point out that sphotochemical reflectance index, modified

red simple ratio index and modified ratio normalized difference vegetation index could be

used as an indicator of plant water stress, since their values were correlated well with the

substrate water content and the crop water stress index; the last being extensively used for
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crop water status assessment in greenhouses and open field. Thus, it could be concluded

that reflectance and crop temperature measurements might be combined to provide alarm

signals when crop water status reaches critical levels for optimal plant growth.

Keywords Remote sensing � Speaking plant approach � Multispectral camera � Crop water

stress index

Introduction

Plant stress caused by biotic or abiotic factors that adversely affect plant growth signifi-

cantly reduces productivity. For a certain crop, water stress may be the result of a single or

a combination of abiotic factors such as the aerial microclimate (e.g. air temperature,

relative humidity, solar radiation intensity, air velocity) and root zone (e.g. available water

and electrical conductivity). When a plant becomes stressed, stress is expressed in many

types of symptoms. Water stress, for example, closes stomata and impedes photosynthesis

(Chaves et al. 2002; Sarlikioti et al. 2010) and transpiration, resulting in changes in leaf

colour and temperature (Jackson et al. 1981; Katsoulas et al. 2009). Crop reflectance

(Knipling 1970), chlorophyll fluorescence (Norikane and Kurata 2001) and thermal radi-

ation emittance (Jones and Schofield 2008) are also affected. Other symptoms of water

stress include morphological changes such as leaf curling or wilting due to loss of cell

turgidity. This dynamic response of plants to changes of their environment is called

‘speaking plant’ (Takakura 1974).

Early detection of plant stress is very critical especially in intensive production systems

in order to minimize both acute and chronic loss of productivity. Thus, plant based sensing

could be valuable to better understand the interactions between plants and their micro-

climate (Kacira et al. 2005).

Methods such as substrate water content for soilless crops or soil water tension, leaf

water potential and sap flow, among others, have been widely used to assess plant water

status. Though, soil or substrate water content indicates the availability of water in the root

zone, this is not always directly correlated with plant water status. In addition, although

leaf water potential and sap flow measurements do provide direct information about plant

water status, they require plant contact or destructive sampling, something difficult to

realize in commercial scale. Non-contact and non-destructive sensing techniques can

continuously monitor plants and enable automated sensing capabilities (Ling et al. 1996).

That is why several studies have attempted to detect and quantify water stress using

thermal emittance and reflectance measurements obtained by remote sensing (e.g.

Sclemmer et al. 2005; Zakaluk and Sri Ranjan 2007; Jones and Schofield 2008).

Although remote sensing has been successfully used for years in open fields and rele-

vant calculation models have been developed [e.g. Jacquemoud et al. (2009) for crop

reflectance or Chavez et al. (2010) for crop temperature measurements], it has not been

extensively tested for crops grown under controlled environmental conditions such as

greenhouses or growth chambers. Open field methods cannot directly be applied in

greenhouses due to difficulties arising mainly from reflections and shadows casted by the

greenhouse frame and equipment. Such problems could be addressed by combining data

from two or more spectral bands to form reflectance indices (Kacira et al. 2005; Sarlikioti

et al. 2010; Tsirogiannis et al. 2013). According to Zakaluk and Sri Ranjan (2008), the
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most common forms of reflectance indices are: (a) reflectance ratios corresponding to the

ratio of two spectral bands, which are referred to as simple ratio (SR) reflectance indices

and (b) normalized reflectance indices (NRI), which are defined as ratios of the difference

in reflectance between two spectral bands to the sum of the reflectance at the same bands.

In addition, the crop water stress index (CWSI), which is based on temperature mea-

surements, proved to be one very successful tool for crop water stress detection under open

field (Alchanatis et al. 2010; Meron et al. 2010; González-Dugo et al. 2013; Cohen et al.

2015) and greenhouse conditions (Katsoulas et al. 2001; Kacira et al. 2002; Katsoulas et al.

2002).

For commercial production settings, it is more advantageous to develop a real-time

plant canopy health, growth and quality monitoring system with multi-sensor platforms

(Story and Kacira 2015). This can be achieved by a sensing system equipped with a multi-

sensor platform ultimately using plants as ‘sensors’ to communicate their true status and

needs. Such systems can be potentially used not only for crop water status assessment but

also to detect crop deviations from normal development, e.g. due to crop stress (i.e.,

nutrient deficiencies).

Therefore, the objective of the present work was to explore the use of multispectral and

hyperspectral canopy reflectance and crop temperature measurements, carried out remo-

tely, under controlled environmental conditions to assess crop water status. Further aim is

to develop a computer vision plant monitoring system for real-time crop diagnostics. For

this purpose the measurements obtained in well-watered plants are compared to those

obtained from plants where irrigation was stopped for some days.

Materials and methods

Growth chamber facilities and plant material

The experiments were carried out during August and September of 2014 in a controlled

growth chamber, located at Velestino, Central Greece. The geometrical characteristics of

the growth chamber were as follows: height = 3.2 m, width = 4 m, length = 7 m, ground

area = 28 m2. Air temperature, relative humidity, light intensity and CO2 concentration

were automatically controlled using a climate control computer (Argos Electronics,

Greece). Air temperature and humidity were controlled by means of a heat exchanger

while CO2 concentration was controlled by adding pure CO2. The light intensity was

controlled by means of 24 high pressure sodium lamps, 600 W each (MASTER Green-

Power 600 W EL 400 V Mogul 1SL, Philips), operated in four groups with 6 lamps per

group. The groups where turned on progressively during the morning and switched off

progressively in the evening to simulate the daily evolution of solar radiation at greenhouse

conditions. The average light intensity obtained at the level of the plants when all 24 lamps

were used was 240 W m-2.

The tomato plants (Solanum lycopersicum cv. Elpida, Spyrou SA, Athens, Greece) were

grown in slabs filled with perlite (ISOCON PerloflorHydro 1). Two units comprising two

crop lines each (six slabs per line, three plants per slab) were used. The mean volumetric

water content of perlite at field capacity was 53–55%. The measurements started thirty

days after transplanting, when the plants had about 10 leaves each, were about 1 m high

and had a leaf area index of about 0.8. The nutrient solution was supplied to the crop via a

drip system and controlled by a commercial time irrigation controller (eight irrigation
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events per day at 03:30, 07:00, 10:00, 12:00, 14:00, 16:00, 18:00, 19:30 local time), with

set points for electrical conductivity at 2.4 dS m-1 and pH at 5.6.

In order to study the effects of irrigation water deficit on crop reflectance characteristics,

two different irrigation treatments were applied for 9 days (starting 30 days after trans-

planting): (a) a water deficit treatment, by withholding the nutrient solution supply through

removal of drippers in five perlite slabs and (b) a control treatment where the plant water

needs were completely covered and a drainage rate of about 35% was obtained. During the

first three days of the measurements both treatments were irrigated according to the time

schedule irrigation program set by the irrigation computer (Days 1–3). Then, in treatment

(a) the drippers were removed from the slabs for five days (Days 4–8) and placed back to

the slab on Day 9 of the experiment. Each experiment lasted 9 days and was repeated three

times, imposing different slabs in water deficit each 9 days period. The data selected for

analysis in this work correspond to one 9 days period.

Measurements

Air temperature (T, in �C) and relative humidity (RH, in %) were measured using two

temperature–humidity sensors (model HD9008TR, Delta Ohm, Italy) calibrated before the

experimental period, placed 2 m above the ground level. Using T and RH values, air

vapour pressure deficit values were calculated. Light intensity (Rg,i, in W m-2) inside the

growth chamber was recorded using a solar pyranometer (model SKS 1110, Skye instru-

ments, Powys, UK) located 2 m above ground level. Leaf temperature (Tl, in �C) was

measured using two infrared thermographs (type OS5551A, Omega Engineering Inc.,

Manchester, USA) installed at a distance of 0.9 m from the crop, at a constant angle of 45�
from the vertical axis of the target plants (control and water deficit treatment). Thus, the

surface area sensed was about 5000 mm2. The infrared thermographs were calibrated

according to international standards (American National Standard 1998; O’Shaughnessy

et al. 2011) prior to their installation, by measuring the temperature of a black target (flat

piece of black metal) that emitted the highest amount of energy than any other surface at

the same temperature. Substrate volumetric water content (h, %) was estimated using

capacitance sensors (model WCM, Grodan Inc., The Netherlands). Four water content

sensors were placed horizontally in the middle (height and width) of the hydroponic slabs

(two sensors per treatment). The above data were automatically recorded in a data logger

system (Zeno 3200, Coastal Environmental Systems Inc., Seattle). Measurements took

place every 30 s and 10 min average values were recorded.

Two spectra sensors were used in this work:

(1) The radiation reflected by the plants was monitored every day between 8:00 and

9:00 for periods of 9 consecutive days, using a portable spectroradiometer (model

ASD FieldSpec Pro, Analytical Spectral Devices, Boulder, CO, USA), measuring

the radiation reflected in the range between 350 and 2500 nm (with sampling

interval of 1.4 nm and 2; and spectral resolution of 3 and 10 nm for the regions

between 350–1000 and 1000–2500 nm, respectively). In order to measure leaf

reflectance, a contact reflectance probe connected to the spectroradiometer was used,

providing a 25� field of view fiber optic of 100 W halogen reflectorised lamp with

fibre-optic input socket and color temperature at least 3000� K. Leaf reflectance

measurements were taken in contact with the leaf. Reflectance measurements of 20

leaves per treatment were taken randomly within the canopy (20 leaves within 5

Precision Agric

123



slabs per treatment). A white spectralon panel was used to calibrate the sensor every

20 min.

(2) During Days 3–6 and 9 of the experiment, the radiation reflected by the plants under

water deficit treatment was also monitored every hour (from 08:00 to 19:00) using a

multispectral camera (custom model, spatial resolution 1280 9 1024 pixels, Quest

Innovation, OH, USA) measuring in three spectral bands centered between 590 and

680 nm [R(590–680)], 690–830 nm [R(690–830)] and 830–1000 nm [R(830–1000)]

regions. The camera included an F-type lens and an 8 bit CMOS-type sensor and

was controlled through a PC by means of a special software (Frame Link Express

Application, Imperx, USA). For optimal radiometric calibration of the imaging

system, a calibration protocol was followed in two steps. The first step was

performed in the laboratory, using known light sources. The responsiveness of the

multispectral camera to three different spectral bands under different radiation

intensities was recorded and analysed in order to choose the appropriate camera

settings (frame rate and exposure time) and decrease the signal-to-noise ratio.

During this step, the image noise characteristics are determined and the initial gain

and offset are adjusted. Furthermore, the response of the instrument was adapted to a

polynomial to obtain the instrument response function and evaluate the nonlinear

characteristics. The second step of the calibration was performed in the controlled

growth chamber. During the second step, the appropriate camera’s settings were

further improved according the light conditions, the growth chamber structure, the

surrounding surfaces (background, ground) and the density and architecture of the

canopy. Katsoulas et al. (2016) also described the calibration methodology for a

similar imaging system used to formulate appropriate reflectance indices for plant

water stress detection. The camera was located stable 1 m from the vertical axis of

the canopy level to sample the canopy area of young, fully developed leaves

between the 3rd and 6th branch of three plants. At the time of measurements a black

surface was used as background, in order to block out any reflection from growth

chamber surfaces, ensuring a constant field of view without shadows. A sample of

10 images per treatment per hour between 08:00 and 19:00 was taken and the mean

reflectance values of the region of interest (fully developed leaves between the 3rd

and 6th branch) were calculated. Before that image segmentation was performed to

segment leaves out from the background using isodata and k-mean statistical

methods. After segmentation, a mask was created on the area covered by the young

and fully developed leaves. The mask was applied to all other bands of the

multispectral image to extract the mean intensity value of the relevant leaf area.

MATLAB (by MathWorks�) and ENVI (by Exelis�) software packages were used

for image analysis and plant reflectance acquisition. To further overcome the

reflection differences due to shadows and reflections and measure true percent

reflectance, a white low-density polyethylene sheet of known reflectance (W) was

positioned 1 m in front of the sensor and its measured reflectance served as a

normalizing reference for all readings. Before each calibration (steps one and two

referred above) or measuring process, dark images were acquired as well by

covering the lens with a cap. Thus, once a day, before each diurnal cycle of

measurements on plants, a measurement on the white and dark references were

taken. This frequency of white and dark reference was considered acceptable since

the light conditions into the growth chamber during the period of measurements

were stable. Plant reflectance (r) was calculated by the ratio of the difference

between actual image reflectance (R, i.e. the intensity of reflected light signal in a
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certain bandwidth) and dark reference (D) to the difference of white and dark

references (r = (R-D)/(W-D)).

Calculations

Based on the available reflectance measurements the following indices were calculated and

evaluated to explore their relationship with water stress:

– AB, Average bands, by estimating the mean reflectance between 490–510, 530–560,

660–670, 730–760, 1400–1500 and 1600–1700 nm. The above spectrum areas were

estimated following a first derivative analysis as proposed by Köksal et al. (2010).

– Three bands centred between 590–680 nm (R(590–680)), 690–830 nm (R(690–830)) and

830–1000 nm (R(830–1000)) regions.

– Two Simple Ratio indices, defined as (Peňuelas and Inoue 1999; Jones et al. 2004):

–

WI Water Indexð Þ ¼ R970=R900;

–

VOGREI 1 Vogelmann Red Edge Indexð Þ ¼ R740=R720

– Thirteen normalized reflectance indices defined as (Tsirogiannis et al. 2013; Sarlikioti

et al. 2010; Shimada et al. 2012; Kim et al. 2010; Köksal et al. 2010; Amatya et al.

2012):

PRI Photochemical Reflectance Indexð Þ ¼ R531� R570ð Þ= R531þ R570ð Þ

sPRI ¼ R560� R510ð Þ= R560þ R510ð Þ

NDVIð490�620Þ Normalized Difference Vegetation Indexð Þ
¼ R490� R620ð Þ= R490þ R620ð Þ

NDVIð800�680Þ ¼ R800� R680ð Þ= R800þ R680ð Þ

NDVIð710�810Þ ¼ R710� R810ð Þ= R710þ R810ð Þ

NDVIð790�670Þ ¼ R790� R670ð Þ= R790þ R670ð Þ

NDVIð790�550Þ ¼ R790� R550ð Þ= R790þ R550ð Þ

rNDVI red Normalized Vegetation Indexð Þ ¼ R750� R705ð Þ= R750þ R705ð Þ

VOGREI 3 ¼ R734� R747ð Þ= R715þ R720ð Þ

sNDVI1 ¼ R810�R710ð Þ= R810þ R710ð Þ

sNDVI2 ¼ R810�R560ð Þ= R810þ R560ð Þ
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mrSRI modified red Simple Ratio Indexð Þ ¼ R750� R445ð Þ= R705� R445ð Þ

and

mrNDVI ¼ R750� R705ð Þ= R750þ R705� 2 � R445ð Þ:

Based on the available temperature measurements the following indices were calculated

and evaluated to explore their relationship with water stress:

– Crop water stress index CWSI defined as (Baille et al. 2001):

CWSI ¼ Tc � Tm

TM � Tm

where Tc is the canopy temperature (�C), TM (�C) is the higher limit of canopy temperature

which was assumed to be achieved with minimum canopy conductance and Tm (�C) is the
lower limit of canopy temperature which was assumed to be achieved with maximum

canopy conductance estimated as described in Katsoulas et al. (2002).

The temperature stress index TSD (Clawson et al. 1989) calculating the temperature

difference between the canopy temperature and the lower limit of canopy temperature (Tc–

Tm). TSD is separated to: (a) TSDmeas index in which the canopy temperature (Tc) is

measured by a temperature sensor while the lower limit of canopy temperature (Tm) is

calculated as referred by Katsoulas et al. (2002) considering a maximum canopy con-

ductance and (b) TSDfield in which the canopy temperature (Tc) and the lower limit of

canopy temperature (Tm) are measured using remote temperature sensors.

Statistical analysis

Comparison of means was performed by applying one-way ANOVA at a confidence level

of 95% (p B 0.05) using SPSS (Statistical Package for the Social Sciences, IBM, USA).

Additionally, linear regression was performed between the reflectance indices studied and

some abiotic parameters. The mean value along with the measurement variability (standard

error of the mean, ±SE or standard deviation, ±SD) of the parameters measured

are presented.

Results

The mean value of air temperature inside the growth chamber during the period of mea-

surements was 26 and 19 �C, for daytime and night-time periods, respectively, with small

variations around these values. In addition, the mean values of air relative humidity during

the same time period were 85 and 65%, respectively. In the following sections the results

obtained during a sequence of 9 consecutive days are presented. The data obtained during

the other two sequences of days showed a similar trend to those presented herein.

While in the case of the control treatment the volumetric water content (h) (mean h data

calculated by the measurements recorded from 7:00 to 9:00 each morning during the days

of the experiment (n = 12/day/treatment)) in the slabs was kept at field capacity levels

(about 53% ± 0.02, Fig. 1), the h values observed in the water deficit treatment decreased

progressively after drippers withdrawing from the slab, to reach the level of 34%

(±SD[ 0.17; ±SE[ 0.07) 5 days later (Day 8). Then, it increased again during the last

day of measurements as soon as the drippers where placed back to the slabs. The difference
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in h values between control and treated plants was statistically significant (p\ 0.05) as

soon as the h values observed in water deficit treatment were reduced below 50%.

Diurnal crop reflectance

Diurnal crop reflectance measured by means of the multispectral camera in the spectral

bands centred between R(590–680), R(690–830) and R(830–1000) regions is presented in Fig. 2,

during a day with normal irrigation used as reference (Day 3) and during the second (Day

4) and the third day (Day 5) after irrigation withholding. It can be seen that during the

reference day, the plant reflectance values varied slightly during the day with no statisti-

cally significant differences (p[ 0.05) along the day. However, the reflectance values

measured at R(690–830) increased more than 5% (p\ 0.05) during the first day of irrigation

withholding after midday (Day 4, 16:00). The data remained high the following day (Day

5). The mean reflectance values observed at R(830–1000) spectrum area progressively

increase (p\ 0.05) during the second day of irrigation withholding after midday (Day 5,

16:00). This augmentation overcame to 20% during late in the afternoon (Day 5, 18:00).

The daily mean values of crop reflectance measured from 8:00 to 9:00 by means of the

multispectral camera from plants imposed to water deficit are presented in Fig. 3, for the

different days studied before (Day 3) and after irrigation withholding. In addition, the mean

reflectance values calculated by the mean reflectance measured in the early morning by the

spectroradiometer (to the same spectral regions with those of the multispectral camera i.e.

590–680, 690–830 and 830–1000 nm) from well-watered plants during the same time

period are also shown. It can be seen that during the day that both treatments were well

watered (Day 3) both systems measured similar levels of reflectance (no significant dif-

ference between the data observed in control and water deficit treatment was observed).

However, during the first day of irrigation withholding the plants under water deficit tended

to have higher reflectance values at R(690–830) and R(830–1000) than the well-watered plants

(p\ 0.05), while the values measured at R(590–680) remained constant during the period of

measurements for both treatments.

Fig. 1 Diurnal evolution of volumetric water content values measured in the perlite slabs in the two
treatments (n = 12/day/treatment). Continuous line: control treatment; dotted line: water deficit treatment.
The error bars represent the standard deviation (±SD) of the means (one-way ANOVA, p\ 0.05)
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The mean value of the leaf reflectance measured by means of the spectroradiometer in

the spectral region from 350 to 2500 nm are presented in Fig. 4, for the different days

studied before and after irrigation withholding. It can be seen that the reflectance values

measured were similar for both cases before irrigation withholding (p[ 0.05) but as soon

as irrigation stopped (Day 3) the reflectance values of plants under water deficit started to

differentiate from those of the control plants (p\ 0.05)(Fig. 4d).

According to Köksal et al. (2010), based on a first derivative analysis, certain parts of

the spectrum can be selected for further study. Applying this analysis, the following

spectral regions were discriminated: 490–510 nm (Bpeak), 530–560 nm (Gpeak),

660–670 nm (Rpeak), 730–760 nm (rNIRpeak), 1400–1500 nm (mNIRpeak) and

1600–1700 nm (fNIRpeak). Subsequent the above discrimination, the grey areas shown in

Fig. 4a–i indicate those from the above spectral regions where statistically significant

differences (p\ 0.05) were observed between the reflectance measured in the reference

and treated plants during the 9 consecutive days.

Three days after initiating irrigation withholding (Day 6), the reflectance differences

between the reference and treated plants were significantly increased (p\ 0.05) in the

entire range of the spectral regions studied (Bpeak: 3.8%, Gpeak: 3.7%, Rpeak: 9.8%,

rNIRpeak: 3.7%, mNIR: 9% and fNIRpeak: 5.8%). Restarting irrigation during Day 9

resulted in a decrease of the difference between the reflectance values measured in the two

Fig. 2 Daily evolution of plant reflectance measured in the spectral bands centred at R(590–680), R(690–830),
R(830–1000) spectrum regions by means of the multispectral camera, 1 day before (Day 3) and 2 days (Days
4–5) after irrigation withholding. a R(590–680); b R(690–830); c R(830–1000); solid line day 3-Irrigation; dotted
line day 4-irrigation withholding; dash line day 5-irrigation withholding. The error bars represent the
standard deviation (±SD) of the means
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treatments showing that plants started recovering. However, from the above mentioned

spectrum regions, only the reflectance measured in the 730–760 nm (rNIRpeak),

1400–1500 nm (mNIRpeak) spectrum reached similar values between the two treatments

3 days after irrigation restart, while statistically significant differences (p\ 0.05) were still

observed in the rest of the regions studied (data not shown).

Reflectance indices

The measured values of leaf reflectance obtained by means of the spectroradiometer were

used for the calculation of the indices presented in Sect. 2.3. The indices values observed

were similar even 2 days after irrigation withholding initiation (Fig. 5). However, statis-

tically significant differences were observed between the two treatments (p\ 0.05) almost

48 h after irrigation withholding for mrSRI and mrNDVI and 72 h later for NDVI(790–670)
and sPRI. In the case of NDVI(790–670) and sPRI, the reflectance index values estimated for

the plants under stress were about 1.5 and 25%, respectively, lower than those estimated

for the reference plants, while in the case of mrSRI and mrNDVI the reflectance index

values estimated for the plants under stress were about 70 and 4%, respectively, higher

than those estimated for the reference plants.

It was shown that as h decreased, NDVI(790–670) and sPRI also decreased, while mrSRI

and mrNDVI increased. Nonetheless, for the same value of h observed in the two irrigation

treatments, different values of NDVI(790–670), sPRI, mrSRI and mrNDVI (measured in the

perlite slabs between 07:00 and 09:00) were observed. Thus, in order to eliminate the effect

of reflectance evolution during time, the indices values difference between the treated and

control plants [Dindex(Treatment–Control)] were correlated to the volumetric water con-

tent differences between the two treatments during the same time period [Dh(Treatment–

Control)]. When plotting Dindex vs. Dh values, a strong linear relationship was found

(Fig. 6) of the type:

Fig. 3 Daily evolution of reflectance of plants under water deficit measured by means of the multispectral
camera (n = 20, data recorded from 8:00 to 9:00) and well-watered plants measured by means of the
spectroradiometer in the spectral bands centred at R(590–680), R(690–830), R(830–1000) spectrum regions
(n = 20, data recorded from 8:00 to 9:00) (one-way ANOVA, p\ 0.05). Day 3: all plants were well-
watered; days 4–8 irrigation withholding; day 9: irrigation restart. Squares R(590–680); triangles R(690–830);
circles R(830–1000); continuous line control treatment; dotted line water deficit treatment. The error bars
represent the standard deviation (±SD) of the means (one-way ANOVA, p\ 0.05)
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bFig. 4 Evolution of leaf reflectance of control and treated plants (n = 20/day/treatment), during the period
of measurements (a–c days 1–3, well-watered plants, d–h days 4–8 irrigation withholding, i day 9 irrigation
restart). Continuous line control treatment; dotted line water deficit treatment (one-way ANOVA, p\ 0.05)

Fig. 5 Evolution of a NDVI(790–670), b sPRI, c mrNDVI and d mrSRI values (n = 20/day/treatment) of
well-watered plants and plants under water deficit during the period of measurements (days: 1–3 well-
watered plants, days 4–8: irrigation withholding in treated plants, day 9: irrigation restart). Continuous line
control treatment; dotted line water deficit treatment. The error bars represent the standard errors of the
means (±SE)

Fig. 6 Relationship between the differences observed in indices values (a NDVI(790–670) and sPRI, and
b mrSRI and mrNDVI) between the two treatments with respective differences in substrate volumetric water
content (h, %) values observed. The straight lines represent the best fit regression lines between the D
indices and Dh values. Empty symbols: a DNDVI(790–670) and b DmrSRI; solid symbols a DsPRI and
b DmrNDVI
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DNDVIð790�670Þ ¼ 0:0007Dh� 0:003; with R2 ¼ 0:72

DsPRI ¼ 0:0002Dh�0:001; with R2 ¼ 0:76

DmrNDVI ¼ �0:002Dhþ 0:008; with R2 ¼ 0:80

DmrSRI ¼ �0:389Dhþ 0:367; with R2 ¼ 0:72

The determination coefficient (R2) of the mentioned regression was found to be higher

than 0.70 (p\ 0.05) for NDVI(790–670), sPRI, mrNDVI and mrSRI (Fig. 6). As for the rest

of the indices presented in Sect. 2.3, the R2 values were lower than 0.60, were excluded

from further study, since the aim of the work is to identify indices that correlate well with

water availability in the root.

Crop temperature and thermal indices evolution

The average daily value of crop temperature for the well-watered plants varied from 22 to

24 �C during the experiment period, while three days after irrigation withholding the

respective values for the plants under irrigation deficit were more than 1 �C higher than the

reference plants, as substrate water content decreased from 54 to 39%.

Figure 7 shows that both TSDmeas and TSDfield thermal indices and CWSI had a good

correlation (p\ 0.05) with substrate volumetric water content (R2 higher than 0.7). The

average daily value of TSDmeas and TSDfield three days after irrigation withholding

increased from -0.7 to 2.6 and 0.3 to 3.3 �C, respectively.
The average daily value of CWSI for the well-watered plants varied from 0.43 to 0.48

(SE = ±0.029), while the respective values for the water stressed plants increased from

0.42 to 0.71 (SE = ±0.021) three days after irrigation withholding (69% increase,

p\ 0.05).

A good relationship was obtained between TSDmeas, TSDfield and CWSI with h:

Fig. 7 Relationship between mean daily values of a TSDfield and TSDmeas and b CWSI and substrate
volumetric water content (h, %) in well-watered plants and plants under water deficit (n = 12, data recorded
from 7:00 to 9:00). Square TSDfield; rhomb TSDmeas; solid squares CWSI of water deficit treatment; empty
squares CWSI of control treatment. The straight lines represent the best fit regression lines (Linear
regression, p\ 0.05) and the error bars represent the standard deviation (±SD) of the means
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TSDmeas ¼ �0:15hþ 8:34 �2:1ð Þ; with R2 ¼ 0:79 p\0:05ð Þ;

TSDfield ¼ � 0:21hþ 11:06 �1:8ð Þ; with R2 ¼ 0:85 ðp\0:05Þ;

CWSI ¼ 0:02hþ 1:40 �0:15ð Þ; with R2 ¼ 0:87 ðp\0:05Þ:

Discussion

Reflectance evolution

In hydroponic crops, it is not possible to obtain water deficit (when withholding irrigation

completely) without affecting also the availability of nutrients in the root zone. Thus, the

effect on spectral reflectance observed in the water stressed plants may be the combination

of both water and nutrients stress. Nevertheless, considering that each water deficit

treatment lasted only 6 days and taking into account that for very mobile nutrients such as

nitrogen and potassium, deficiency symptoms develop predominantly in the older and

mature leaves (Taiz et al. 2015) and that the measurements in the present study were made

in young and fully developed leaves, it could be considered that the symptoms detected

were mainly due to water stress. Yet, this was also the methodology followed in similar

preview studies (e.g. Sarlikioti et al. 2010).

The reflected radiation of the tomato leaves followed the typical reflectance signature of

a common healthy green leaf (Jacquemoud and Ustin 2008).Water stress is generally

linked to reflectance increase particularly in the near infrared region due to radiation

scattering by air content risen in sponge cavities (less water content, Jones et al. 2004;

Sclemmer et al. 2005; Vigneau et al. 2011; Amatya et al. 2012). The reflectance increase in

blue and red spectrum regions could be explained by the effects of plant water stress on

leaf pigments and chlorophyll concentration reduction (Peňuelas et al. 1997; Ray et al.

2006; Kim et al. 2010; Kruse 2004; Sclemmer et al. 2005; Jain et al. 2007).

Indeed, the results of the present study showed that the reflectance of the treated canopy

in the complete spectrum area measured was affected by the irrigation treatment. The mean

reflectance measured between 730–760 and 1600–1700 nm was correlated to the plant

water deficit from the first day of irrigation withholding (Fig. 4a–i). In contrast to near

infrared region, in the middle infrared region, more absorption and less reflectance and

transmittance is observed in green leaves due to the fact that water absorbs more radiation

in that spectrum. Thus, this region contains more information about sponge parenchyma

that includes water, cellulose, nitrogen, lignin and starch. Therefore, several authors (e.g.

Hunt and Rock 1989; Bowman et al. 1989; Verdebout et al. 1994; Cordon and Lagorio

2007; Jacquemoud and Ustin 2008) have already concluded that the use of middle infrared

reflectance is insufficient to estimate the leaf water status, due to the fact that reflectance

changes within a biologically meaningful range are too insignificant and the light signal at

that spectrum is too low (high light signal noise). Thus, it is not easy to be measured

reflectance data in greenhouse conditions based on remote sensing techniques (such as

multispectral and hyperspectral machine visions). Even the most advanced hyperspectral

sensors present instability in measurement up to 1000 nm over time, due to the intense

effect of solar radiation in the target area (Tuominen and Lipping 2011). Usually, reflec-

tance spectrum areas up to 1000 nm are measured through satellites, portable spectrora-

diometer based on contact reflectance probe or laboratories protocols, something difficult
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to realise in greenhouse commercial scale. Thus, the most suitable indices in greenhouse

conditions include spectrum areas below to 1000 nm.

Reflectance and thermal indices evolution

The values of mrSRI and mrNDVI were higher in the treated plants, which is in agreement

with the results presented by Amatya et al. (2012), who found similar increase under

waters stress conditions.

Previous research has indicated that the PRI is a sensitive indicator of water stress

(Suárez et al. 2009; Sarlikioti et al. 2010), however this was not confirmed in the present

study. This could be due to the low level of lighting occurring during the period of

measurements (240 W m-2) since according to Sarlikioti et al. (2010) PRI could be

sensitive to water stress for radiation levels higher than about 350 W m-2.

The values of TSDfield had good correlation with substrate volumetric water content.

However, the existence of well irrigated plants as a reference point during the measure-

ments is of high importance for the method. On the other hand, TSDmea could detect plant

water stress without recording the temperature of well-watered plants. Simultaneously, the

CWSI was sensitive to plant water stress from the first day of irrigation withholding, as the

index variation rate was increased more than 25%, without the need of measuring the

temperature of well-watered plants. Finally, a good correlation (Fig. 8) was also observed

between the differences in CWSI observed between the two treatments and the sPRI,

mrSRI, mrNDVI indices values observed between the two treatments, which indicates that

those indices could also be used for crop water status assessment:

DsPRI ¼ 0:01DCWSI� 0:001; with R2 ¼ 0:87

DmrSRI ¼ �11:82DCWSI þ 0:263; with R2 ¼ 0:85

DmrNDVI ¼ �0:13DCWSI þ 0:014; with R2 ¼ 0:80

Previous research studies have supported the idea that the NDVI(800–680) is a sensitive

indicator when it comes to water stress detection (Jones et al. 2007; Liu et al. 2004) but this

was not confirmed in the present study and others as well. For instance, Jones et al. (2004)

claim that the index provides a medium estimate of plant water content, while it is a better

Fig. 8 Relationship between the differences observed in indices values (a mrNDVi and mrSRI and b sPRI)
between treated and control plants with the respective differences observed in the CWSI values of the two
treatments (n = 12, Days 3, 4, 5, 6 and 9 of the experiment). Squares mrNDVI; triangles mrSRI; rhomp
sPRI. The straight lines represent the best fit regression lines (Linear regression, p\ 0.05) and the error
bars represent the standard deviation (±SD) of the means
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indicator of nitrogen content and biomass. Kim et al. (2010) and Genc et al. (2011) showed

that NDVI(800–680) has good correlation to water treatment patterns only when water field

capacity is less than 60%, where the canopy coverage is quite low, while Köksal (2011)

states that the index is highly correlated with yield increase. In this experiment, the 5-day

time of plant irrigation withholding is not long enough to affect plant leaf area and/or cause

yield reduction. WI (water index) was another index that did not correlate significantly

with substrate volumetric water content in this study. Peňuelas and Inoue (1999) presented

results in which WI decreased during the first water losses in monocotyledonous plants

(wheat), while in the case of dicotyledonous plants (peanut), with double leaf water

concentration due to leaf structure capacity, WI started to decrease when leaf water con-

centration reached 60%. Finally, VOGREI is commonly used to correlate the reflectance

radiation at 720 and 740 nm with total chlorophyll content at the leaf level (Vogelmann

et al. 1993). Amatya et al. (2012) found good correlation between VOGREI and soil water

content two months after treatment initiation among different water levels (10, 15, 20 and

25% of field capacity).

Concluding remarks

The results of the present study show that NDVI, sPRI, mrSRI and mrNDVI could be used

as an indicator of plant water stress in greenhouses, up to a certain limit. sPRI, mrSRI and

mrNDVI differences between water stressed and well-watered plants were correlated well

with the respective differences in volumetric water content and CWSI values of the two

treatments. TSDmeas is more convenient index for canopy water stress deficit without the

need of measuring the temperature of well-watered plants. Reflectance and temperature

measurements in greenhouses could be integrated over time in order to trigger irrigation

events. Nevertheless, it has to be noted that the results presented correspond to a nine days

period and the correlations observed are relevant to the conditions of the measurements and

the specific crop studied.
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